SamMPLE CHAPTER

W 2lavaScript
%, 1 0rampplication Design

A Build First Approach

Nicolas Bevacqua
Addy Osmani

| | I

JavaScript Application Design
A Build First Approach

by Nicolas Bevacqua

Chapter 4

Copyright 2015 Manning Publications

brief contents

PART 1 BUILD PROCESSES .eoceteeteesccescescescesssescescessosscsssssssssossssse 1

Introduction to Build First 3
Composing build tasks and flows 23
Mastering environments and the development workflow 50

Release, deployment, and monitoring 71

PART 2 MANAGING COMPLEXITY .eceececceceececcecsecascessncassessocasses 97

Embracing modularity and dependency management 99

Understanding asynchronous flow control methods in
JavaScript 131

Leveraging the Model-View-Controller 166
Testing JavaScript components 211
REST API design and layered service architectures 251

Release, deployment,
and monitoring

This chapter covers

Understanding release flow and predeployment
tasks

Deploying to Heroku
Using Travis for continuous integration
Understanding continuous deployments

We’ve covered the build process, common build tasks you can perform (and how to
do that using Grunt), and, at a high level, environments and configuration. We dis-
cussed the development environment extensively, but that’s only half the story. The
development environment is where you’ll spend most of your time working,
because you’ll have a system in place, so you can prepare your application for a
release, deploy it to a platform that humans can access, and then monitor the appli-
cation state. Thanks to the Build First mentality, you'll be automating the workflows
I've just mentioned, avoiding repetition, human error, and running tests, all while
saving time, as I promised in chapter 1.

A continuous integration (CI) platform will help deploy more robust builds to
production by ensuring your tests pass in a hosted environment. As you’ll see later

71

72

Release, deployment, and monitoring

in the chapter, CI helps test your code base remotely every time you push to your ver-
sion control system (VCS). Build automation (and continuous development) is crucial
for keeping your day-to-day development efforts productive and efficient. Compara-
bly, having a workflow that’s easy to execute ensures you can deploy your application
as often as needed, without worrying about an embarrassing manual set of tasks that
take half an hour to perform.

By the end of this chapter, you’ll be ready to perform safe, continuous deploy-
ments, which are similar to continuous development in spirit. They’re both intended
to cut down the repetitive work and reduce human mistakes. The release flow has a
few stages we’re going to follow in this book:

The first step is the build process, under the release distribution.

Once the build is compiled, you’ll run tests to make sure recent changes didn't
break the build. Minor syntax issues should be constantly resolved during devel-
opment by using lint programs.

If the tests succeed, you might get into predeployment operations such as
updating the version number and the release changelog.

After that, you’ll investigate deployment options, such as cloud hosting options
and CI platforms.

Figure 4.1 describes this proposed release and deployment flow. As you look at the fig-
ure, keep a mental note of my proposal to deploy to staging first, to make sure every-
thing works as expected in a hosted environment, before going live to production.

You have a long road ahead; let’s commence by discussing the release and deploy-
ment flow. You’ll visit predeployment operations in detail in section 4.2. Then in sec-
tion 4.3, T'll tell you all about deployments, and you’ll learn how to deploy an
application to Heroku. Section 4.4 covers continuous integration and the tools you
can use to get CI to do the heavy lifting on your behalf.

Release and deployment flow

Performance concerns Executed as a single We'll come back to
Grunt task alias. 7 < these in section 4.2.
Build Deployment

Compilation Predeployment |

Source built

Y code Testing application

grunt build:release

Optimization Optimal | Deploy to staging |

i

Deploy to production |

Figure 4.1 Proposed release and deployment flow

4.1

4.1.1

Releasing your application 73

Releasing your application

When preparing your application for release, you’ll want to place the web’s best prac-
tices on your plate. In chapter 2, we discussed minification, shrinking your assets for
better performance, and concatenation, joining files together to reduce the number of
HTTP requests, which you’ll definitely want to include in your release builds. These
improve the web application’s user experience by bundling your developer-readable
source code into single files containing everything in the source code, but in a com-
pressed form to hasten downloads. In that chapter we also covered sprite maps and
sprites, large files containing many images. These would be used for debug distribu-
tions, too, for the sole reason that they enable you to keep debug and release more
tightly bound together and less dissimilar. Otherwise you’d need to reference the indi-
vidual icons in your debug CSS, and then somehow reference the spritemap and each
icon’s position in release, defeating the purpose of uniting both build flows and
repeating yourself, breaking the DRY principle.

Minification, concatenation, spriting—what else is there to a release flow? In this
section we’ll go over image optimization and asset caching; then we’ll move on to the
deployment flow, semantic versioning, and keeping changelogs up-to-date effortlessly.

Image optimization

Concatenated and minified JavaScript and CSS files don’t tell the whole story. Images
represent, more often than not, the bulk of a web page’s download footprint, mean-
ing they are even more important to optimize than any other static assets. You already
did a good chunk of optimization in chapter 2, when you examined how to generate a
spritesheet using different images, which is comparable to how concatenation works
for text files, merging many files into a single one. The other optimization, minifica-
tion, reduces the contents of script and stylesheet files by shortening variable names
and other micro-optimizations that minifiers perform. In the world of images, you
have various ways to compress files, resulting in gains somewhere between 9% and
80%, typically above 50%. Luckily for us, certain Grunt packages, much like we’re
becoming accustomed to, do the heavy lifting for us in this regard.

One such package is grunt-contrib-imagemin, which does exactly what you want:
image compression for different formats such as PNG, GIF, and JPG. Before plunging
into it, I'll briefly cover the two aspects of image optimization it can help you with:
lossless compression and interlacing.

LOSSLESS IMAGE COMPRESSION

Lossless image compression is, much like JavaScript minification, tasked with the removal
of unimportant bits of data from your image’s raw binary data. The important thing
to notice is that lossless compression doesn’t alter the image’s appearance, but solely
its binary representation. The only result of lossless compression is a smaller image
that looks identical to the larger image. Lucky for us, smarter people have spent time
working on tools that do advanced image compression work for us. You can specify
the path to your image and have their algorithms work at it. Furthermore,

74

Release, deployment, and monitoring

grunt-contrib-imagemin configures these low-level programs with the right parame-
ters, so you don’t have to. Note that lossless compression produces modest byte sav-
ings compared to lossy compression; it’s great, however, when you can’t afford to lose
any image quality. When you can afford to lose image quality (and most of the time
the losses are almost unnoticeable), you should use lossy image compression.

LOSSY IMAGE COMPRESSION

Lossy compression is an image compression technique where inexact approximation
is applied (also known as partial data discarding) when re-encoding the image, result-
ing in far greater byte savings than those gained through lossless compression (up to
90% savings), where the removed information is usually only metadata such as geo-
location, camera type, and so on. The grunt-contrib-imagemin package uses lossy
compression by default, in addition to lossless compression, to remove unnecessary
metadata. If you only want to use lossless compression, you should consider using the
imagemin package directly.

INTERLACING IMAGES

The other image optimizing task you're going to study is inferlacing.' Interlaced
images have a larger size than regular images, but these added bytes are usually well
worth it, because they improve perceived performance. Even though the image might
take a little longer to complete downloading, it will start rendering faster than normal
images do. Progressive images work exactly as they sound. They render a minimum
view of the pixels in the image, which roughly looks like your complete image, and
then they’re progressively enhanced (as more data gets streamed to the browser),
until the full-quality image is available.

Traditionally, images load top-down, in full quality, which translates into a faster
download time but slower perceived rendering. The time to view the entire image
equals the completion time. In progressive rendering mode, humans perceive a faster
experience because they don’t have to wait as long to see a (garbled) view of the
entire image.

SETTING UP GRUNT-CONTRIB-IMAGEMIN

Setting up grunt-contrib-imagemin is, happily, as easy as the rest of the tasks we’ve
gone over. Keep in mind that the important bits are in learning what the tasks do and
how and when to apply them. The following listing configuration optimizes *.jpg
images during release builds.

Listing 4.1 Optimizing images during release builds

imagemin: {
release: {
files: [{
expand: true,
src: 'build/img/**/*.jpg’

1

Learn more about how interlacing improves perceived performance by visiting http://bevacqua.io/bf/

interlacing. There’s also an animated GIF that better explains how an interlaced image works.

http://bevacqua.io/bf/interlacing
http://bevacqua.io/bf/interlacing

4.1.2

Releasing your application 75

11,
options: {
progressive: true // progressive jpgs

}

}

Listing 4.1 doesn’t need any extra configuration to compress the images; that’s done
by default. A fully working example can be found in the accompanying source for this
chapter, labeled ch04/01_image-optimization, with a complete build workflow for
both the debug and release distributions. Now that you’ve made the web a slightly
better place for humans to drift around aimlessly, you can turn your attention to static
asset caching.

Static asset caching

In case you're unfamiliar with the term, think of caching as photocopying history
books from the library. Rather than going to the library every time you want to read
them, you might prefer to print copies of a few pages, take those home, and read
them whenever you please without having to hit the library again.

Caching in the web is more complicated than photocopying books borrowed from
a library, but that should give you the gist of it.

EXPIRES HEADERS

A best practice you should definitely follow is using Expires headers for your static
assets. This header, according to the HTTP protocol, tells the browser not to request
the resource again if it was requested at least once (and therefore cached), and the
cached version hasn’t become stale. The expiration date in the Expires header deter-
mines when the cached version is no longer considered valid, and the asset has to be
redownloaded. An example Expires header might be Expires: Tue, 25 Dec 2012
16:00:00 GMT.

This is both an awesome and a terrible practice. It’s awesome for humans, because
after their first visit to one of your pages, they don’t need to redownload resources
their browser stored in its cache, saving them requests and time. It’s terrible for us, the
developers, because it won’t matter if you deploy changes to your assets, humans
won’t download them anymore.

To solve that inconvenience, and make Expires headers useful, you can rename
your assets every time you deploy changes to them, appending a hash to their names,
which forces browsers to download the file again, because for all intents and purposes,
it’s a different file from what they used to have in their cache.

HASHING A hash is a function that returns a fixed-length value that’s an
encoded representation of data. In your situation, the hash could be com-
puted from the asset contents and its last modified date. One such hash might
be a38cbf9e. Although seemingly arbitrary, there’s no randomness involved.
That would defeat the purpose of using an Expires header, because files
would always have different names and be requested again every time.

76

Release, deployment, and monitoring

Once you’ve computed a hash, you can use it as a query string parameter in your
page, /all.js?_=a38cbfIe, or you can append it to the filename, such as /a38cbfe
.all.js. Alternatively, you can add the hash to an ETag header. Choosing the right
approach is a matter of identifying your needs. If you’re dealing with static assets such
as JavaScript resources, then you’re probably better off hashing the filename (or its
query string) and using an Expires header. If you're dealing with dynamic content,
setting the hash in an ETag is preferred.

USING LAST-MODIFIED OR AN ETAG HEADER

An ETag header uniquely identifies one version of a resource. Similarly, Last-
Modified identifies the last modification date of the resource. If you use either of
these headers, then you should use the max-age modifier in the cache-control
header, instead of the Expires header. This combination allows for softer caching, as
the user agent can determine whether the cached copy should be used, or if the
resource should be requested again. The following example shows how to combine
the ETag and the cache-control headers:

ETag: a38cbfe

Cache-Control: public, max-age=3600

The Last-Modified header behaves as an alternative to the ETag header, for conve-
nience. Here we don't specify a uniquely identifying ETag, but achieve the same
uniqueness by setting a modification date:

Last-Modified: Tue, 25 Dec 2012 16:00:00 GMT
Cache-Control: public, max-age=3600

Let’s find out how you can use Grunt to create hashes for your file names that can
then be used to set far-futures Expires headers safely.

CACHE BUSTING WITH GRUNT

Within your build process, you can do little to set HTTP headers, as those must go out
with each response, rather than be statically determined. But what you can do is assign
hashes to your assets using grunt-rev. This package will compute the hash for each
of your assets and then rename them, appending the corresponding hash to their
original names. For example, public/js/all.js would be changed to something
such as public/js/1be2cd73.all.js, where 1be2cd73 would be the computed hash
for the contents of all.js. One issue emerges from this task, and it’s that now your
views won’t reference the correct assets, because they’ve been renamed with a hash in
front of them. To remedy that, you can use the grunt-usemin package, which looks
for static asset references in your HTML and CSS and refreshes them with the updated
filenames. That’s exactly what you need. The relevant Grunt configuration then looks
like the following listing (labeled ch04/02_asset-hashing in the samples).

Listing 4.2 Updating filenames

rev: {
release: {
files: {

4.1.3

Releasing your application 77

src: ['build/**/*.{css,Js,png}']

}
Iy

usemin: {

html: ['build/**/*.html'],

css: ['build/**/*.css']
}
Keep in mind you don’t have any use for either of these tasks in the debug flow,
because these are optimizations that do nothing to benefit you during development,
so it might be appropriate to name their targets release to make that distinction
more explicit. The usenin task, however, is written in such a way that Grunt targets
have a special meaning. The css and html targets are respectively used to configure
which CSS and HTML files you want to update with the hashed filenames, but targets
such as release would be ignored by usemin.

The next technique we’ll cover involves inlining CSS in a style tag to avoid the

render-blocking request for CSS, resulting in faster page loads.

Inlining critical above-the-fold CSS

Browsers block rendering whenever they encounter a CSS resource they need to

download. Yet, we’ve taught each other for years to place CSS at the top of our pages

(in the <head>), so users won’t see a flash of unstyled content (abbreviated as FOUC).

The inlining technique aims to improve page load time speed without damaging user

experience by avoiding FOUC. This technique only works effectively if you’re render-

ing your views on the server side as well as the client side, as we explore in chapter 7.
To implement this feature, you have to do a number of different things:

First, you need to identify the “above-the-fold” CSS; these are the styles that are
required to correctly render the visible elements on the page, on first load.
Once we’ve identified the styles that are effectively used above the fold (those
that the browser needs to render the page properly and avoid the FOUC), you
need to inline them in a <style> tag on the <head> of your pages.

Last, now that the required styles are inlined in a <style> tag, you can elimi-
nate the render-blocking request for the CSS style sheet by deferring the request
until after the onload event has triggered, using JavaScript.

Naturally, you wouldn’t want to leave users with JavaScript turned off stranded,
and because we’re good citizens of the web, you’ll also use a fallback
<noscript> tag to make the render-blocking request anyway.

As you’ve probably noticed, this is a complicated and error-prone process, much like
the case study in chapter 1, where Knight’s Capital lost half a billion dollars due to
human error. It’s probably not going to be that catastrophic for you if something goes
wrong, but automating this process is almost mandatory: there’s too much work
involved to be done every time your styles change, or whenever your markup changes!

Let’s learn how we can use Grunt to automate this process, using grunt-critical.

78

4.1.4

Release, deployment, and monitoring

HAVING GRUNT DO THE HEAVY LIFTING
Using grunt-critical for this purpose is incredibly easy, although it does provide a
wealth of configuration options. In the following code, you’ll find the configuration
for a simple use case. In this case, you’re extracting critical CSS from a page and inlin-
ing those styles after the build, inside a <style> tag. critical goes the extra mile of
deferring the rest of the styles so as not to block rendering, and it also adds the
<noscript> fallback tag for those that have JavaScript disabled:
critical: {
example: {
options: {
base: './',
css: [
'page.css'
]
I

src: 'views/page.html',
dest: 'build/page.html'

}

You probably are already familiar with all of the provided options, which are file paths.
The base option indicates the root directory that should be used when finding abso-
lute resource paths such as /page.css. Once you set up Grunt to perform inlining on
your behalf, remember to serve the upgraded HTML files, rather than the prebuilt
ones.

Before switching gears and soaking in the thermal spring waters of automated
deployments, you need to reflect upon the importance of testing a release build
ahead of each deployment to mitigate the possibility of the spring being in an active
volcanic area.

Testing before a deployment

Before you get into the deployment stage, or even the predeployment stage as we’ll
explore soon, you need to test your release build. Testing a release build becomes
important when there’s a deployment in your future, because you want to make sure
your application behaves as you expect, or at the least, behaves as the tests you’ve writ-
ten expect it to behave.

In the next part of the book, we’ll delve into the underworld of application testing
and examine two types of testing (though many, many more exist) in detail. These are
unit testing and integration testing:

Unit testing: Here you test individual components of your application by isolat-
ing them, making sure the components work fine on their own.

Integration (or end-to-end) testing: This takes a series of unit-tested compo-
nents and tests the interactions between them, making sure they communicate

appropriately.

4.2

Predeployment operations 79

It’ll be a while before you embark on testing practices and examples. We’ll discuss test-
ing practices and see examples in chapter 8. Keep in mind that before deployments,
you need to test your application, reducing the odds of shipping a faulty build to one
of your hosted environments, particularly if said environment is production. Let’s dis-
cuss a few more tasks you can perform after a release is tested but before it’s deployed.

Predeployment operations

Once you’ve prepared a build for release and had it carefully tested, you're ready to
deploy. But I have a couple of important predeployment tasks I want to mention
before taking a swim in the deployment hot springs.

Figure 4.2 is an overview of the deployment flow, as well as the operations that
come before a build can be considered deploy-ready. It also shows how you’re going to
progressively roll out your update to different environments, ensuring maximum
predictability.

PREDEPLOYMENT OPERATIONS

Semantic versioning: This helps keep track of meaningful application versions.
Semantic versions are formatted similarly to MAJOR.MINOR.PATCH-BUILD. This
standard helps avoid confusion when managing dependencies. Keeping your
application versioned is important if you want any control over what code is cur-
rently deployed on hosted environments, such as production. It enables you to
roll back to an older version when things go awry. Considering this is fairly easy
to set up, and taking into account how costly it is to be unprepared for deploy-
ments not panning out, versioning becomes a no-brainer.

Change logging: A changelog is a list of changes that were made throughout the
history of your project, divided by which version they were introduced in (partly
why keeping versions is important) and further segmented as bug fixes, break-
ing changes, and new features. By convention, changelogs in git repositories
are often placed at the project root, and named something along the lines of

Deployment flow Assign a meaningful,

unique version number. .)
4 Deploy if all tests are passing

in the previous environment.

Predeployment
versioning concerns

. 7
Optimal Semantic versioning
built Staging Production

Y application Change logging \

Feature tracking pairs each feature, or bug fix,
with the specific version it was conceived in.

Figure 4.2 Versioning before a deployment and progressive deployment rollout. Testing by QA team
in staging ensures robustness before deployment to production.

80

4.2.1

Release, deployment, and monitoring

CHANGELOG. txt, or using whatever extension you prefer (such as md for Mark-
down,? a text-to-HTML conversion tool).

We’ll delve into how you can better allocate your changelog upkeep time in a bit, but
first let’s explore the details of semantic versioning.

Semantic versioning

Because you're using Node, you might be familiar with the term semantic versioning.
npm uses semantic versioning® for all packages, because it’s a powerful specification to
manage dependency resolution among different Node modules. Because every Node
application you produce already has a package. json, and considering those contain a
semantic version in them, you’ll use these to tag your releases before deployments.

When I talk about versioning, I mean updating the package version and then creat-
ing a tag (a moment in your version history you can refer to) in your VCS. You can set up
any scheme you want when it comes to numbering your releases, but the important part
is that you don’t overwrite a release; you shouldn’t make two releases using the same
version number. To ensure this uniqueness, I've settled for increasing the build number
after every build (regardless of distribution) automatically with Grunt, and I also
increase the patch number when I perform a deploy. Major version changes are inten-
tionally manual, as those are probably introducing breaking changes. The same applies
for minor version changes, as new features are usually introduced in new minors.

With Grunt, you could perform these version increments (from now on referred
to as bumps) using the grunt-bump package. It’s easy to configure, it does the version
tagging for you, and it even commits the changes to the package.json file for you.
Here’s an example:
bump: {

options: {
commit: true,

createTag: true,
push: true

}

These are, in fact, the defaults provided by this task. They’re sensible enough that you
don’t have to configure it at all. The task will bump the version found in package
. json, commit exactly that file with a relevant message, and then create a tag in git to
finally push those changes to the origin remote. If you turn off all three of those
options, the task only updates your package version. Sample ch04/03_version-bump
shows this behavior in action.

Once versioning is sorted out, you’ll want to set up a changelog, enumerating what
changed since the previous release. Let’s mull that over.

2 The Markdown format is a plain-text representation of HTML that’s easy to read, write, and convert into
HTML. Read the original article introducing Markdown in 2004 at http://bevacqua.io/bf/markdown.
3 You can read more about semantic versioning at http://bevacqua.io/bf/semver.

http://bevacqua.io/bf/markdown
http://bevacqua.io/bf/semver

4.2.2

4.2.3

Predeployment operations 81

Using changelogs

You’'re probably used to reading changelogs from products that interest you when new
releases come out (games, in particular, have a strong presence of changelogs in their
culture), but have you ever maintained one yourself? It’s not as hard as you might think.

Setting up a changelog—as an internal document that helps track changes made
over time—could be a positive addition to your project even if you’re not showing it to
consumers.

If you have any sort of transparency policy, or you don’t like keeping humans in
the dark, then a changelog becomes almost mandatory to maintain. You shouldn’t
update the changelog every time you build for release, because you might want to pro-
duce a release build for debugging purposes. You shouldn’t update them before test-
ing, either. If testing fails, then the changelog would be out of sync with the last
release-ready build. Then you’re left with the need to update the changelog after you
produce a build that passes all of the tests. Then and only then can you update the
changelog to reflect the changes made since the last deployment.

Putting changelogs together is often hard because you forget what changed since
the previous release, and you don’t want to go through the git version history figur-
ing out which changes deserve a spot in the changelog. Similarly, updating it by hand
every time you make a change is tedious, and you might forget to do that if you’re in
the zone. A better alternative might be to set up grunt-conventional-changelog and
have it build a changelog for you. All you’d have to do then is commit messages that,
by convention, start with £ix for bug fixes, feat when new features are introduced,
or BREAKING when you break backwards compatibility. Furthermore, this package will
allow you to edit the changelog by hand once it’s done with its own parsing and
updates.

As far as configuration goes, this task doesn’t need any. Here are a few sample com-
mit messages:
git commit -m "fix: buffer overflows, closes #17"
git commit -m "feat: reticulate splines for geodesic cape, closes #23"

git commit -m "feat: added product detail view"
git commit -m "BREAKING: removed POST /api/vl/users/:1d/kill endpoint"

Bumping changelogs

The bump-only and bump-commit tasks allow you to bump the version without commit-
ting any changes, so that you can then update your changelog (as you'll see in a min-
ute). Last, you should bump-commit to check in both package.json and
CHANGELOG. txt at once in the same commit. Once you configure the bump task to
also commit the changelog, you can now use the following alias to update your build
version and changelog in one fell swoop. You can find an example using grunt-
conventional-changelog in the samples, listed as ch04/04_conventional-changelog.

grunt.registerTask('notes', ['bump-only', 'changelog', 'bump-commit']);

82

4.3

Release, deployment, and monitoring

Now you’re done building for release, your tests are passing, and you’ve updated your
changelog. You’'re ready to deploy to a hosted environment from which you can serve
your application. In the past, it was fairly commonplace to deploy applications merely
by means of uploading your built packages by hand to your production servers. You’ve
come a long way from those good old days, and deployment tools, as well as applica-
tion hosting platforms, have gotten better.

Let’s next dive into Heroku, a Platform as a Service (PaaS) provider that enables
you to deploy your application easily from the command line.

Deploying to Heroku

Setting up a deployment flow can be as hard as preparing sushi or as easy as ordering
take-out; it all depends on how much control you want over the deployment. At one
end of the spectrum you have services such as Amazon’s Infrastructure as a Service
(IaaS) platform, where you have full control over your hosted environment. You can
pick your preferred operating system, choose how much processing power you’d like,
configure it at will, install things on it, and then deal with the whole SysOps heavy lift-
ing, such as securing the application against attacks, setting up proxies, picking a
deployment strategy that guarantees uptime, and configuring most everything from
the ground up.

On the other end of the spectrum are services where you don’t have to do any-
thing, such as those solutions often offered by domain name registrars such as
GoDaddy. In these solutions you generally pick a theme, flesh out a few pages of static
content, and you're done; everything else is done for you.

For the purposes of this book, I looked into the possibility of explaining how to
host an application on Amazon, but I concluded that it’d be going too far off-scope.
That being said, I’ll be mentioning near the end of this section a way in which you can
explore this alternative on your own.

I decided to go with Heroku (although there are similar alternatives, such as Digi-
talOcean), which isn’t as complicated as setting up an instance on Amazon Web Ser-
vices (AWS), but is fairly nontrivial, as opposed to using a website generator. Heroku
simplifies your life by easily enabling you to configure and deploy your application to
a hosted environment on their platform, straight from the command line. As I men-
tioned previously, Heroku is a Platform as a Service (PaaS) provider where you can
host your application regardless of language or lack of server administration knowl-
edge. In this section we’ll go over the deployment of a simple application to Heroku,
step by step.

At the time of this writing, Heroku offers a tier that allows you to host your applica-
tions with them for free. Let’s get started there. You can find these instructions® in the
accompanying source code as well.

4

Find the Heroku deployment example online at http://bevacqua.io/bf/heroku.

http://bevacqua.io/bf/heroku

Deploying to Heroku 83

Go to https://id.heroku.com/signup/devcenter, and enter your email.

The next manual step you need to follow is installing their toolbelt, a series of
command-line programs that help you manage your applications hosted on
Heroku. You can find it at https://toolbelt.heroku.com, and then follow the
instructions to run heroku login, which you can find on that same website.
You’ll then need a Procfile, which is a fancy file to describe the OS processes
your application runs on.

Heroku’s definition of a Procfile can be found below. Note that there are also a few
more steps to this process that can be found a few paragraphs later.

PROCFILE A Procfile is a text file named Procfile placed in the root of your
application that lists the process types in an application. Each process type is a
declaration of a command that’s executed when an instance (called dyno in
Heroku’s jargon) of that process type is started. You can use a Procfile to
declare various process types, such as multiple types of workers, a singleton
process like a clock, or a consumer of the Twitter streaming API.

Long story short, for most well-designed Node applications out there, the Procfile will
look similar to the following code:

web: node app.js

As far as the application goes, you're going for the bare minimum, because this is a
taste of what deploying to Heroku feels like. app. js could be as small as the following
snippet of JavaScript (ch04/05_heroku-deployments):

var http = require('http');
var app = http.createServer (handler) ;

app.listen(process.env.PORT || 3000);

function handler (req, res) {

res.writeHead (200, { 'Content-Type': 'text/plain' });

res.end('It\'s alive!');
}
Note that you use process.env.PORT || 3000, because Heroku will provide your
application with a port it should listen on that will be exposed on the environment
variable named PORT.

Then you use 3000 for local development. Now, here are a few more steps to take:
Once you’re sitting on your project root, execute the following in terminal, to
initialize a git repository:
git init
git add .
git commit -m "init"

Next create the app on Heroku with heroku create. This is a one-time thing.

https://id.heroku.com/signup/devcenter
https://toolbelt.heroku.com

84

Release, deployment, and monitoring

At this point, your terminal should look similar to figure 4.3.

@S ® nico@ubuntu: ~/nicofgit/buildfirst

» heroku create
Creating intense-beach-4074... done, stack is cedar
http://intense-beach-4874.herckuapp.com/ | git@heroku.com:intense-beach-4874.git

Figure 4.3 Creating an app on Heroku using their CLI

On every deploy you want to make, you can push to the heroku remote using git
push heroku master. This will trigger a deploy, which looks something like figure 4.4.

OO nico@ubuntu: ~/nico/git/buildFirst
I.
» git push heroku master
Host key fingerprint is Bb:4B:5e:67:0e:c9:16:47:32:f2:87:0¢c:1f:cB:60:ad
+--[RSA 2048]----+
| o+0.+ . |
4* *

Initializing repository, done.

Counting objects: 6, done.

Delta compression using up to 4 threads.
Compressing objects: 10e% (5/5), done.

Writing objects: 186% (6/6), 2.17 KiB | @ bytes/s, done.
Total 6 (delta @), reused 0 (delta @)

Node.js app detected
Requested node range: ©.10.x
Resolved node version: ©.10.25
> Downloading and installing node
Installing dependencies
npm WARN package.json buildfirst-heroku-deployment-example@d.1.8 No repository field.
Cleaning up node-gyp and npm artifacts
Building runtime environment
Discovering process types
Procfile declares types -> web

Compressing... done, 5.3MB
Launching... done, v3
http://polar-brook-3895.herokuapp.com deployed to Heroku

To git@heroku.com:polar-brook-3895.git
* [new branch] master -> master

Figure 4.4 Deploying to Heroku—as simple as git push

If you want to pull up the application in the browser, use the following command:
heroku open

There’s one caveat about Heroku and PaaS providers. When it comes to deploying
build results, there’s no simple solution. You shouldn’t include build artifacts in your
repository, as that may cause undesirable results such as forgetting to rebuild after

4.3.1

4.3.2

Deploying to Heroku 85

changing something. You shouldn’t get too comfortable building on their platforms,
either, because building is something that should be done locally or on an integration
platform, but not on the application server itself, because that would put a dent in
your application’s performance.

Deploying builds

The problem is you shouldn’t put build results in version control, because those are
the output of your source. Instead you should build before deployments, and deploy
the build results along with the rest of your code. Most PaaS providers don’t offer
many alternatives. Platforms such as Heroku take deployments from Git when you
push to their remote, but you don’t want to include the build artifacts in revision con-
trol, so that becomes an issue. The solution: treat Heroku as you would any continu-
ous integration platform (more on that in section 4.4), and allow Heroku to build
your application in its servers.

Heroku doesn’t usually install devDependencies for Node projects, because it uses
npm install --production, and you need to use a custom buildpack to get around
that. Buildpacks are interfaces between the language you use and the Heroku plat-
form, and they’re collections of shell scripts. Creating an application with the custom
Grunt-enabled buildpack is easy using the following command, where thing is the
name of your app on Heroku:
heroku create thing --buildpack https://github.com/mbuchetics/heroku-

buildpack-nodejs-grunt.git
Once you’ve created an application using the custom buildpack, you could push the
way you usually do, and that would trigger a build on Heroku servers. The last thing
you need to set up is a heroku task:

grunt.registerTask('heroku', ['jshint']);

Heroku will terminate deployments if the build fails, keeping the previously deployed
application unaffected by failed builds. There’s a detailed explanation in the accom-
panying samples, listed as ch04/06_heroku-grunt, which will walk you through setting
this up.

Let’s take a look at how you can fit multiple environments in a single Heroku
application.

Managing environments

If you want to set yourself up so you can host multiple environments® on Heroku, such
as staging and production, use different git remote endpoints to achieve this. Cre-
ate a remote other than heroku with the CLI:

heroku create --remote staging

5 Heroku has advice on managing multiple environments. Go to http://bevacqua.io/bf/heroku-
environments.

http://bevacqua.io/bf/heroku-environments
http://bevacqua.io/bf/heroku-environments

86

4.4

44.1

Release, deployment, and monitoring

Instead of git push heroku master, you should now do git push staging master.
Similarly, instead of doing heroku config:set FOO=bar, you now need to explicitly
tell heroku to use a particular remote, such as heroku config:set FOO=bar
--remote staging. Remember environment configuration is environmentspecific,
and should be treated as such, so environments shouldn’t share API keys to third-party
services, database credentials, or any authentication data in general.

Now that you can configure and deploy to specific environments directly from
your command line, it’s time to learn about a practice known as continuous integra-
tion, which will help tighten the leash on overall code quality. If you want to look into
deployments to Amazon Web Services, there’s a small guide® you can follow in the
accompanying source code (labeled ch04/07_aws-deployments in the samples).

Continuous integration

Martin Fowler is one of the most renowned proponents of continuous integration. In
his own words,” Fowler describes CI as follows.

CONTINUOUS INTEGRATION is a software development practice where members
of a team integrate their work frequently; usually each person integrates at
least daily, leading to multiple integrations per day. Each integration is veri-
fied by an automated build (including test) to detect integration errors as
quickly as possible. Many teams find that this approach leads to significantly
reduced integration problems and allows a team to develop cohesive software
more rapidly.

Furthermore, he entices us to run the test suite in an environment that’s as close to
our production environment as possible. The implication is that your best bet, when it
comes to testing your application, is doing it in the cloud, the way you do your host-
ing. CI platforms such as Travis-CI provide features like build error notifications and
access to the full build logs, detailing everything that happened during the build (and
its testing).

I mentioned Travis-CI; let’s see how we can set ourselves up in such a way that we
can remotely add builds to a queue on its platform on every commit made to our
repository. Then Travis-CI build servers will process this queue one item at a time, run-
ning our builds and letting us know about the results.

Hosted CI using Travis

Continuous integration means to run tests on a remote server (which is as similar as
possible to the production environment) in hopes of catching bugs that would other-
wise make their way to the general population. Travis-CI is one CI platform (Circle-CI
is another) where you can get feedback remotely on the result of a build once you’ve
properly configured it. If the build is successful, you won’t even notice. If the build

® Walk through the deployment process to AWS with this code sample at http://bevacqua.io/bf/aws.
7 Read Fowler’s full article on continuous integration at http://bevacqua.io/bf/integration.

http://bevacqua.io/bf/aws
http://bevacqua.io/bf/integration

Continuous integration 87

[Fixed] bevacqua/unbox#15 (master - 80e7d3T)

Travis Cl

g‘% bevacqua / unbox (master)

Build #15 was fixed. @ 2 minutes and 41 secands

@ Nicolas Bevacqua B0eTd3T Changeset —
Figure 4.5 A typical Travis
notification for a build fix

fails, you’ll get an email notification telling you someone broke your build (oops!).
Later, when a subsequent push fixes the build, you’ll get another notification letting
you know about the fix. Additionally, you can also access full build logs on the Travis
website, which always comes in handy when figuring out why a build failed. Figure 4.5
shows one such email notification.

Setting up CI is almost too easy in this day and age. The first thing you’ll need to
do is create a .travis.yml file at the project root. In the file, you’ll need to declare
the language you’re using, which in your case is identified as node_js, the runtime
version you’re testing your builds against, and a series of scripts to execute before,
during, and after the integration test. For the purposes of illustration, such a file
might look like the following code:

language: node_js

node_js:
- "0.10"

before_install:
- npm install -g grunt-cli script: - grunt ci --verbose --stack
CONFIGURING TRAVIS AND GRUNT
Before executing your tests, you need to install the command-line interface for Grunt,
grunt-cli, through npm. You'll need itin the integration test server the way you need
it in your development environments so you can run Grunt tasks. You can use the
before_install section to install the CLL

All that’s left then is to set up a ci task for Grunt. The ci task could run jshint to
mitigate syntax errors, just like you're already doing locally every time something
changes, thanks to your newfangled continuous development workflow. You should
configure the ci task to run unit and integration tests as well, on top of linting your
code with jshint.

The real value in CI comes from having the remote server build your entire appli-
cation and apply your tests (lint included) against the code base, ensuring you don’t
depend on files not checked into version control or dependencies you might have
installed locally but not made available in your code base at large.

You’ll probably want to try out this example yourself, and I recommend you do so,
because it’s a good exercise for deployment-craving minds. You can follow the

88 Release, deployment, and monitoring

detailed instruction set I laid out in the accompanying sample repository,® named
08_ci-by-example, under ch04. Once you’re done with that, you might as well learn
about continuous deployments, a practice that may or may not fit into your workflow,
but one that you should be fully aware of, regardless.

4.4.2 Continuous deployments

The Travis platform supports continuous deployments to Heroku.” Continuous deploy-
ments are a fancy way of saying that every single time you push to version control, you
also trigger a build job in the CI server (which you’re already doing as of last section,
when you turned on Travis CI integration). When those builds succeed, the CI server
deploys on your behalf to the release environments of your choosing.

In my experience, continuous deployments are a two-edged sword. When they work,
you are cutting into a world of joy and less tedious deployments where passing the build
and test integration cycle is validation enough to push to production. But you have to
be confident that you’ve got enough tests in place to catch errors sensibly. A safe bet
might be to enable continuous deployment to your staging environment rather than
directly to production. Then, you’d make sure there are no issues in staging, and per-
form a deploy to production. This workflow looks like figure 4.6.

There’s work involved in enabling continuous deployments to Heroku. You need
an API key from Heroku, and you need to encrypt it and then configure .travis.yml
with the encrypted data. I'll leave that up to you, now that I've voiced my concerns
about deploying to production directly. If you choose to do that, visit http://
bevacqua.io/bf/travis-heroku for instructions.

We’ve spent the majority of this chapter addressing deployments, which is a good
thing. Now you can finally turn your attention to the options you have when it comes

Continuous deployment flow

On every push, a build is
triggered on the Cl server.

Performed automatically by the Cl server

Continuous integration server once tests are passing in your build.

| Runs your build and tests | (
Source

code | Deploys if everything succeeds |

Staging Production

N
It's not a bad idea to perform this deployment —/
by hand, or at the very least, supervise it.

Figure 4.6 Proposed continuous deployment flow

8 Find the fully documented code sample online at http://bevacqua.io/bf/ travis.
9 Read the article on Travis continuous deployments to Heroku at http://docs.travis-ci.com/user/
deployment/heroku/.

http://bevacqua.io/bf/travis
http://docs.travis-ci.com/user/deployment/heroku/
http://docs.travis-ci.com/user/deployment/heroku/
http://bevacqua.io/bf/travis-heroku
http://bevacqua.io/bf/travis-heroku

4.5

4.5.1

Monitoring and diagnostics 89

to monitoring the state of your application as a whole, and individual requests in par-
ticular, when live in production. You’ll also examine approaches to logging, debug-
ging, and catastrophe tracing.

Monitoring and diagnostics

Production application monitoring is as important as having loyal customers. If you
don’t appreciate application uptime, your customers won’t appreciate you. This is to
say that you can’t afford not to monitor your production servers. By monitoring I
mean keeping access logs (who’s visited what, when, and where from), as well as error
logs (what went wrong), and perhaps even more importantly, setting up alerts so that
you are immediately notified when things go expectedly wrong. “Expectedly” wasn’t a
typo; you should expect things to go wrong, and be as prepared as you can for those
situations. Your enterprise probably doesn’t warrant a simian army roaming around
and randomly terminating off instances and services like Netflix advocates'’ to ensure
their servers can reliably and consistently endure faults, such as hardware failure, with-
out it affecting the end users consuming their services. But their advice, quoted as fol-
lows, still applies to most every software development effort.

QUOTE FROM NETFLIX BLOG If we aren’t constantly testing our ability to suc-
ceed despite failure, then it isn’t likely to work when it matters most—in the
event of an unexpected outage.

How do you plan for failure, though? Well, that’s the sad part; nothing you do will pre-
vent failure. Everyone has downtime, even giants such as Microsoft, Google, Face-
book, and Twitter. You can plan all you want, but your application is going to fail
regardless of what you do. What you can do is develop a modular architecture that’s
capable of dealing with services going boom and instances going bust. If you can
achieve that modularity, it shouldn’t be as damaging when a single module stops work-
ing, because the rest would still be perfectly functional. We’ll develop notions of mod-
ularity, and the single responsibility principle (SRP) in chapter 5, dedicated to
modular design and a crash-course introduction to the Node.js platform.

The first rule about Fight Club is you do not talk about Fight Club. Sorry, wrong
movie. The first rule about application monitoring is you log things and set up notifi-
cations when bad things happen. Let’s go over a possible implementation for that.

Logging and notifications

I’'m sure you’re more than used to console.log on the front end to inspect variables,
and maybe even as a debugging mechanism, using it to figure out which code paths
are being followed, and helping you nail down bugs. On the server side you have the
standard output and standard error streams, both logging to your terminal window.
These transports (stdout and stderr; more on transports in a minute!) are useful for

10" Learn about Chaos Monkey, a chaos mongering service at Netflix, at http://bevacqua.io/bf/netflix.

http://bevacqua.io/bf/netflix

90

Release, deployment, and monitoring

development, but they are near useless to you if you can’t capture what’s being trans-
mitted to them in a hosted environment, where you can’t monitor the process in your
own terminal.

Heroku has a mechanism where it captures the standard output of your processes,
so you can access it down the road. It also has add-ons to further extend that behavior.
Heroku add-ons provide much-needed companion services such as databases, email-
ing, caching, monitoring, and other resources. Most logging add-ons would allow you
to set up filtering and notifications; however, I'd advise against leveraging Heroku’s
logging capabilities, as that would be too platform-specific, and it can severely limit
your ability to migrate to another PaaS provider. Dealing with logging on your own
isn’t that hard, and you’ll soon see the upside of doing so.

WINSTON FOR LOGGING

I'm not a huge fan of taking advantage of the Heroku logging facilities, because it
binds your code base to their infrastructure by assuming writing to standard output
will suffice in your log tracking efforts. A more durable and versatile approach would
be to use a multitransport logger rather than writing to stdout. Transports dictate
what happens with the information you’re trying to log. A transport might log to a file,
write a database record, send an email, or send push notifications to your phone. In
multitransport loggers, you can use many of these at the same time, but you’d still use
the same API to perform the logging. Adding or removing transports doesn’t affect
the way you write log statements.

Node has a few popular logging libraries, and I've picked winston because it has
every feature you’re looking for in a logger: logging levels, contexts, multiple trans-
ports, an easy API, and community support. Plus, it’s easily extensible, and people
have written transports for nearly everything you’ll ever need.

By default, winston uses the Console transport, which is the same as using stdout
directly. But you can set it up to use other transports, such as logging to a database or
to a log management service. The latter are notably flexible in that they provide a plat-
form where you can choose to get notified on important events without changing any-
thing in your application.

Using a logging solution such as winston is platform agnostic. Your code won’t
depend on the hosting platform to capture standard output to work. To get started
using winston, you have to install the package by the same name:

npm install --save winston

USING -SAVE VS USING -SAVE-DEV

In this case, you'll use the --save flag rather than --save-dev, because winston
isn’t a build-only package like the Grunt packages you’ve toyed with so far. When pro-
viding the --save flag to npm, the package will be added to your package. json file
under dependencies.

Monitoring and diagnostics 91

Once you've installed winston, you can use it right away by putting logger where you
used to put console:

var logger = require('winston');

logger.info('east coast clear as day');

logger.error ('west coast not looking so hot.');

You might have gotten used to the idea of console being a global variable. In my
experience, it’s not wrong to use globals in this kind of scenario, and it’s one of the
two cases where I allow myself to use globals (the other one being nconf, as I men-
tioned in chapter 3). I like setting all the globals in a single file (even if there are only
two), so that I can quickly scan it and figure out what’s going on when I call something
that’s not otherwise defined in a module, or a part of Node. An illustrative glo-
bals.js might be as follows:

var nconf = require('nconf');

global.conf = nconf.get.bind(nconf) ;

global.logger = require('./logger.js');

I also propose keeping a single file where you can define the transports for your log-
ger. Let’s kick things off by using a File transport, as well as the default Console one.
This would be the logger. js file referenced in the previous snippet:

var logger = require('winston');

var api = module.exports = {};
var levels = ['debug', 'info', 'warn',6 ‘'error'];

levels.forEach(function(level) {
apil[level] = logger[level].bind(logger) ;
1)

logger.add(logger.transports.File, { filename: 'persistent.log' 1});

Now, whenever you do logger.debug, you'll be logging a debug message to both the
terminal and to a file. Although convenient, other transports offer more flexibility
and reliability, and such is the case of a few transports we’ll be covering in the accom-
panying samples: winston-mail will enable you to send out emails whenever some-
thing happens (at a level that warrants an email), winston-pushover sends
notifications directly in your phone, and winston-mongodb is one of many traditional
logging transports where you write a record in your database.

Once you’ve made sure to check out the sample listings, you’ll have a better idea of
how configuration, logging, and globals are tied together according to what I sug-
gested. In case you’re religiously against globals, don’t panic. I've also included a sam-
ple where they aren’t used. I like globals (in the two cases I mentioned previously) only
because I find it convenient not having to require the same things in every module.

Now that you’ve spent time dealing with logging, we might as well talk about
debugging Node applications.

92

4.5.2

Release, deployment, and monitoring

Debugging Node applications

You’ll want all the help you can get when it comes to tracing down a bug, and in my
experience the best approach to debugging is increased logging, which is one of the
reasons we’ve talked about it. That being said, you have more than a few ways to
debug Node apps. You might use node-inspector!! inside of Chrome’s DevTools, you
could use the features provided by an integrated IDE such as WebStorm, and then
there’s good old console.log. You could also use the native debugger'? in V8 (the
JavaScript engine Node runs on) directly.

Depending on which kind of bug you’re tracing, you’ll pick the right tool for the
job. For example, if you're tracing a memory leak, you might use a package such as
memwatch, which emits events when it’s likely that a memory leak occurred. A more
common use case, such as pinning down a rounding bug, or finding out what’s wrong
with your API calls, can be satisfied by adding log statements (temporarily with con-
sole.log, or in a more permanent fashion with logger.debug), or using the node-
inspector package.

USING NODE INSPECTOR

The node-inspector package hooks onto the native debugger in V8, but it lets you
debug using the fullfeatured debugging tools found in Chrome as an alternative to
the terminal-based debugger provided by Node. To use it, the first thing you’ll need to
do is install it globally:

npm install -g node-inspector

To enable debugging on your Node process, you can pass the --debug flag to node
when you launch the process, like so:

node --debug app.Jjs

As an alternative, you can enable it on a running process. To do this, you’ll need to
find the process ID (PID). The following command, pgrep, takes care of that:

pgrep node

The output will be the PID for your running Node process. For example, it might be as
follows:

89297

Sending a USR1 signal to the process will enable debugging. This is done using the
kill -s command (note I'm using the process ID from the results of the previous
command):

kill -s USR1 89297

I Find the open source repository for node-inspector at GitHub at http://bevacqua.io/bf/node-inspector.
12 Read the Node.js API documentation on debugging at http://bevacqua.io/bf/node-debugger.

http://bevacqua.io/bf/node-inspector
http://bevacqua.io/bf/node-debugger

4.5.3

Monitoring and diagnostics 93

000 Mm@ Node Inspector % | C)node-inspector/node-ins; x

L C [J 127.0.0.1:8080/debug?port=5858

MBSODLsDPDyPESE g ~B0EBHOSE~HM
|ScmgEE Console

I*] appjs |homeControllerjs %
1/ {function {experts, require, module, __filename, __dirname) { 'use strict’;

3| var controller = module.sxparts = new (requirel’../ViewController.js'))(home’);
5 controller.registerRoutes = functionlapp){
6 /7 app.get('/', controller.getView('landing'));
app.get(’/', controller.redirect('/about')):
app.get('/about’, controller.getView('about'));
1 hil Figure 4.7 Debugging
Node.js code in Chrome

> @ {} Lnel1, Column4 using Node Inspector

If everything worked correctly, Node will notify you where the debugger is listening
through its standard output:

Hit SIGUSR1 - starting debugger agent.

debugger listening on port 5858

Now you need to execute node-inspector and then open Chrome, pointing it at the
link provided by the inspector:

node-inspector

If all goes well, you should see something similar to figure 4.7 and have a full-blown
debugger in your Chrome browser ready to use, which will behave (for the most part)
exactly like the debugger for clientside JavaScript applications. This debugger will
allow you to watch expressions, set breakpoints, step through the code, and inspect
the call stack, among other useful features.

On a higher level than debugging, there’s performance analysis, which will help
detect potential problems in your code, such as memory leaks causing a spike in mem-
ory consumption that could cripple your servers.

Adding performance analytics

You have a few options when it comes to performance profiling, depending on how
specific (we must track down a memory leak!) or generic (how could we detect a spike
in memory consumption?) your needs are. Let’s look into a third-party service, which
can relieve you of the burden of doing the profiling on your own.

Nodetime is a service you can literally set up in seconds, which tracks analytics such
as server load, free memory, CPU usage, and the like. You can sign up at http://
bevacqua.io/bf/nodetime-register with your email, and once you do you'll be pro-
vided with an API key you can use to set up nodetime, which takes a few lines of Java-
Script to configure:
require ('nodetime') .profile({

accountKey: 'your_account_key"',

appName: 'your_application_name'

)i

http://bevacqua.io/bf/nodetime-register
http://bevacqua.io/bf/nodetime-register

94

4.5.4

Release, deployment, and monitoring

9:55 10:00 10:05 10:10 10:15 10:20 Figure 4.8 Server load over time,
tracked by Nodetime

That’s it, and you’ll now have access to metrics, as well as the ability to take snapshots
of CPU load, like the one presented in figure 4.8.

To conclude, we’ll analyze a useful process scaling technique available to Node
applications, known as cluster.

Uptime and process management

When it comes to release environments, production in particular, you can’t afford to
have your process roll over and die with any particular exception. This can be miti-
gated using a native Node API called cluster that allows you to execute your applica-
tion in multiple processes, dividing the load among them, and create new processes as
needed. cluster takes advantage of multicore processors and the fact that Node is
single-threaded, allowing you to easily spawn an array of processes that run the same
web application. This has the benefit of making your app more fault tolerant; you can
spawn a new process! For example, in a few lines of code, you could configure
cluster to spawn a worker every time another one dies, effectively replacing it:

var cluster = require('cluster');

// triggered whenever a worker dies

cluster.on('exit', function () {
console.log('workers are expendable, bring me another vassal!');
cluster.fork(); // spawn a new worker

)

This doesn’t mean you should be careless about what happens inside your processes,
as starting new ones can be expensive. Forking has a cost, tied to the amount of load
your servers are under (requests / time), and also tied to the startup time for your pro-
cess (wait period between spawning it and when it can handle HTTP requests). What
cluster gives us is a way to transparently keep serving responses even if your workers
die: others will come in his name.

In chapter 3 we introduced nodemon as a way to reload your application whenever a
file changed during active development. This time you’ll review pm2, which is similar
to nodemon in spirit, but geared toward release environments.

ARRANGING A CLUSTER
Configuring cluster can be tricky, and it’s also an experimental API at this time, so it
might change in the future. But the upsides brought forth by the cluster module are

4.6

Summary 95

undeniable and definitely appealing. The pm2 module allows you to use fully config-
ured cluster functionality in your application without writing a single line of code,
making it a no-brainer to use. pm2 is a command-line utility, and you need to install it
using the -g flag:

npm install -g pm2

Once installed, you can now run your application through it, and pm2 will take care of
setting up cluster for you. Think of the following command as a drop-in replace-
ment for node app:

pm2 start app.js -i 2

The main difference is that your application will use cluster with two workers (due to
the -1 2 option). The workers will handle requests to your app, and if one of them
crashes, another one will spawn so that the show can go on. Another useful perk of
pm2 is the ability to do hot code reloads, which will allow you to replace running apps
with their newly deployed counterpart without any downtime. You’ll find related
examples in the accompanying source code, listed as ch04/11_cluster-by-pm2, as well
as one on how to use cluster directly, listed as ch04/10_a-node-cluster.

While clustering across a single computer is immediately beneficial and cheap, you
should also consider clustering across multiple servers, mitigating the possibility of
your site going down when your server crashes.

Summary

Phew, that was intense! We worked hard in this chapter:

You became more intimate friends with release flow optimizations such as
image compression and static asset caching.

You learned about the importance of testing a release before calling it a day,
bumping your package version, and putting together a changelog.

Then you went through the motions of deploying to Heroku, and I mentioned
grunt-ec2, which is one of many alternative deployment methods.

Attaining knowledge on continuous integration was a good thing, as you've
learned the importance of validating your build process and the quality of the
code base you released.

Continuous deploys are something you can perform, but you understand the
implications of doing that, so you’ll be careful about it.

You also took a quick look at logging, debugging, managing, and monitoring
release environments, which will prove fundamental when troubleshooting pro-
duction applications.

All this talk about monitoring and debugging calls for a deeper analysis of architecture
design, code quality, maintainability, and testability, which are conveniently at the core
of part 2 in the book. Chapter 5 is all about modularity and dependency management,
different approaches to JavaScript modules, and part of what’s coming in ES6 (a long

96

Release, deployment, and monitoring

awaited ECMAScript standard update). In chapter 6, you’ll uncover different ways you
can properly organize the asynchronous code that’s the backbone of Node applica-
tions, while playing it safe when it comes to exception handling. Chapter 7 will help
you model, write, and refactor your code effectively. We'll also analyze small code
examples together. Chapter 8 is dedicated to testing principles, automation, tech-
niques, and examples. Chapter 9 teaches you how to design REST API interfaces and
also explains how they can be consumed on the client side.

You'll leave part 2 with a deep understanding of how to design a coherent applica-
tion architecture using JavaScript code. Pairing that with everything you've learned in
part 1 about build processes and workflows, you'll be ready to design a JavaScript
application using a Build First approach, the ultimate goal of this book.

JAVASCRIPT/WEB DEVELOPMENT

JavaScript Application Design

Nicolas Bevacqua
T he fate of most applications is often sealed before a single

line of code has been written. How is that possible?

Simply, bad design assures bad results. Good design and
effective processes are the foundation on which maintainable
applications are built, scaled, and improved. For JavaScript de-
velopers, this means discovering the tooling, modern libraries,
and architectural patterns that enable those improvements.

JavaScript Application Design: A Build First Approach introduces
techniques to improve software quality and development
workflow. You'll begin by learning how to establish processes
designed to optimize the quality of your work. You'll execute
tasks whenever your code changes, run tests on every com-
mit, and deploy in an automated fashion. Then you'll focus on
designing modular components and composing them together
to build robust applications.

What's Inside

* Automated development, testing, and deployment
processes

e JavaScript fundamentals and modularity best practices

e Modular, maintainable, and well-tested applications

* Master asynchronous flows, embrace MVC, and design a
REST API

This book assumes readers understand the basics of JavaScript.

Nicolas Bevacqua is a freelance developer with a focus on modu-
lar JavaScript, build processes, and sharp design. He maintains
a blog at ponyfoo.com.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/JavaScriptApplicationDesign

$39.99 / Can $45.99 [INCLUDING eBOOK]

¢CEnjoy the ride through
the process of improving your
development workflow.??

—From the Foreword by
Addy Osmani, Google

¢CFor JavaScript developers,
a must-read!”?

—Stephen Wakely
Thomson Reuters

¢CAn excellent guide through
the maze of the modern
JavaScript ecosystem.??

—Jonas Bandi, IvoryCode GmbH

¢CThe first-ever design
book for developers. »
—Sandeep Kumar Patel, SAP Labs

¢CA one-stop shop
introducing JavaScript
developers to modern
practices and tools.??
— Matthew Merkes, MyNeighbor

(ee eBOO 4

SEE INSERT

ISBN 13: 978-1-L17291-95-1
ISBN 10: 1L-b6L729L-95-1

“ ‘H 5‘3 | 9“9
IM7816171291951

	Bevacqua-SC-front.pdf
	ASampleChapterPages4
	ASCh-04
	Bevacqua-JS-ebook-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

